Big Ideas/Key Concepts:

Note for any standards including both bold and non-bold portions, the bold portions of the standard are the focus for this quarter. Non-bold portions of the standard will be addressed later in the year.

Unit 1: Introduction to Matter & Energy

- Dalton's early model and what evidence he had (laws he used)
- Properties we can measure mass, temperature, pressure, volume, length
- Lavoisier, conceptual understanding of gas laws (excluding ideal)
- Energy at the conceptual level of particles and proportionality with graphs (linear and inverse) to explain gas laws

Unit 2: Introduction to Bonding & Nomenclature

Use properties to introduce bonding and nomenclature; metals and nonmetals; acids and bases; ionic and molecular compounds

Quick Links within this Document <u>Quarter 2</u> <u>Quarter 3</u> Quarter 4 <u>TN Science Standards Reference Guide</u> WCS Chemistry OER	
Standards	Student Friendly "I Can" Statements
CHEM1. <u>PS1.11 Develop and compare historical</u> <u>models of the atom</u> (from Democritus to quantum model) and construct arguments to show how scientific knowledge evolves over time, based on experimental evidence, critique, and alternative interpretations. (This standard is also addressed in the next unit.)	 I can summarize the atomic models of Democritus and Dalton. I can, like Dalton, use common lab equipment and appropriate units of measurement to collect quantitative data, analyze that data, and effectively communicate the results of the investigation. I can analyze data sets using correct significant figures to determine accuracy and precision. I can explain how experimental evidence required the development of the atomic

	model.
CHEM1. <u>PS1.2</u> Demonstrate that atoms, and therefore mass, are conserved during a chemical reaction by balancing chemical equations.	I can interpret a particle model quantitatively and qualitatively in terms of conservation of mass. I can provide evidence for and explain the Law of Definite Proportion, Law of Multiple Proportion, and percent composition.
CHEM1. <u>PS1.5</u> Conduct investigations to explore and	I can use a particle model to represent the behavior of solids, liquids, gases and phase
characterize the behavior of gases (pressure, volume,	changes.
temperature), develop models to represent this	
behavior and construct arguments to explain this	volume, and temperature of a gas
behavior. Evaluate the relationship (qualitatively and	volume, and temperature of a gas.
quantitatively) at STP between pressure and volume	I can evaluate and explain these relationships with respect to kinetic-molecular
(Boyle's law), temperature and volume (Charles's law),	theory.
and volume (Avogadro's law) and evaluate and explain	I can gualitatively apply the gas laws
these relationships with respect to kinetic-molecular	i can quantatively apply the gas laws.
theory. Be able to understand, establish, and predict	
the relationships between volume, temperature, and	
pressure using combined gas law both qualitatively	
and quantitatively.	
CUENALDES A Analyza analyzy abanges to symbolic and	
defend the law of conservation of energy	energy
defend the law of conservation of energy.	energy.
	I can model the flow of energy.
CHEM1.PS1.13 Use the periodic table and	I can relate bond type to patterns of naming ionic and covalent compounds.
electronegativity differences of elements to predict the	I can predict the formulas and names of ionic and covalent compounds
types of bonds that are formed between atoms during	
chemical reactions and write the names of chemical	

compounds, including polyatomic ions using the IUPAC system	
CHEM1. <u>PS1.12</u> Explain the origin and organization of the Periodic Table. <u>Predict chemical and physical</u> <u>properties</u> of main group elements (reactivity, number of subatomic particles, <u>ion charge</u> , ionization energy, atomic radius, and electronegativity) based on <u>location</u> <u>on the periodic table</u> . Construct an argument to describe how the quantum mechanical model of the atom (e.g., patterns of valence and inner electrons) defines periodic properties. Use the periodic table to draw Lewis dot structures and show understanding of orbital notations through drawing and interpreting graphical representations (i.e. arrows representing electrons in an orbital).	I can predict ionic charge based on location on the Periodic Table.
CHEM1. <u>PS1.8</u> Identify acids and bases as a special class of compounds with a specific set of properties.	I can predict the formulas and names of acids and bases.

Big Ideas/Key Concepts:

Note for any standards including both bold and non-bold portions, bold portions of the standard are the focus for this quarter. Non-bold portions of the standard are addressed at other times in the year.

Unit 3: Chemical Quantities

Chemical quantities leading into reactions – the mole; embed solution chemistry (molarity, but not solubility charts and not intermolecular forces); for honors, optional to calculate the empirical and molecular formulas of a compound, and percent yield of a reaction.

Unit 4: Chemical Reactions: Particles & Energy

Reactions – can embed some energy; for honors, optional to do redox reactions and net ionic.

Unit 5: Stoichiometry

Stoichiometry – can embed some energy

Quick Links within this Document Quarter 1 Quarter 3 Quarter 4 TN Science Standards Reference Guide WCS Chemistry OER	
Standards	Student Friendly "I Can" Statements
CHEM1. <u>PS1.1</u> Understand and be prepared to use values specific to chemical processes: the mole, molar mass, molarity, and percent composition.	I can calculate the molar mass of a substance. I can calculate the percent composition of elements in a compound. I can convert between the following quantities of a substance: mass, number of moles, number of particles, and liters at STP. I can calculate the molarity of a solution and use molarity in calculations.

CHEM1.PS1.2 Demonstrate that atoms, and therefore	I can balance a chemical equation.
mass, are conserved during a chemical reaction by balancing chemical equations.	I can classify a chemical reaction as synthesis, decomposition, combustion, single replacement, or double replacement.
CHEM 1. <u>PS1.4</u> Use the reactants in a chemical reaction to predict the products and identify reaction classes (synthesis, decomposition, combustion, single replacement, double replacement).	I can use reactants to predict the products of a chemical reaction. I can use activity series and solubility rules to predict the products of single replacement and double replacement reactions, respectively. I can model the law of conservation of mass using diagrams, calculations, and experiments.
CHEM1<u>.PS3.4</u> Analyze energy changes to explain and defend the law of conservation of energy.	I can model the flow of energy during physical changes and chemical reactions.
CHEM1. <u>PS3.3</u> Distinguish between endothermic and exothermic reactions by constructing potential energy diagrams and explaining the differences between the two using chemical terms (e.g., activation energy). Recognize when energy is absorbed or given off depending on the bonds formed and bonds broken.	I can explain and model the energy change resulting from breaking or forming bonds. I can label a reaction as endothermic or exothermic based on energy flow.
CHEM1. <u>PS1.3</u> Perform stoichiometric calculations involving the following relationships: mole-mole; mass-mass; mole-mass; mole-particle; and mass-particle. Show a qualitative understanding of the phenomenon of percent yield, limiting, and excess reagents in a chemical reaction through pictorial and conceptual examples. (states of matter liquid and solid; excluding volume of gases)	I can solve stoichiometry problems. I can model and illustrate the concept of limiting and excess reactants. I can use experimental data to explain a reaction's percent yield. I can plan and carry out a reaction to produce and collect a desired amount of product. I can convert between the following quantities of a substance: mass, number of moles, and number of particles.

Big Ideas/Key Concepts:

Note for any standards including both bold and non-bold portions, bold parts of the standard are the focus for this quarter. Non-bold portions of the standard are addressed at other times in the year.

Unit 6: Periodic Table & Atomic Structure

Periodic table structure and organization by properties (law of triads; law of octaves; Mendeleev; Mosely); atomic theory (JJ Thomson, Rutherford, nuclear atom, Bohr model with valence electrons and ionization energy data); atomic and ionic radii; EM spectrum concepts – for honors, optional to solve math calculations

Unit 7: Nuclear Chemistry

Nuclear chemistry (subatomic particles; isotopes; radioactive decay); for honors, optional to balance nuclear reactions and solve half-life problems.

Unit 8: Quantum Mechanical Model

Quantum mechanical model (Heisenberg); electron configurations; orbital diagrams; spdf – brings back periodic table and lots of earlier concepts. Convey excitement of merging of theories and models.

Unit 9: Bonding

Bonding and molecular shapes; electronegativity; Lewis structures

Quick Links within this Document	
Quarter 1 Quarter 2 Quarter 4	
TN Science Standards Reference Guide	
WCS Chemistry OER	
Standards	Student Friendly "I Can" Statements
CHEM1 DS1 11 Dovelon and compare historical models	I can draw and explain the Bohr Model of the first 18 elements.
Chewii. <u>P31.11</u> Develop and compare historical models	
of the atom (from Democritus to quantum model) and	I can summarize the experiments, discoveries, and atomic models of Thomson,

construct arguments to show how scientific knowledge	Rutherford Bohr
evolution eventime based or eventimental evidence	
evolves over time, based on experimental evidence,	I can explain how experimental evidence required the refinement of the atomic
critique, and alternative interpretations.	model through the Bohr model
	model through the bolk model.
	I can use evidence to defend and critique the various models of the atom and its
Quantum will be covered later in Unit 8	subatomic structure.
CHEM1. <u>PS1.12</u> Explain the origin and organization of	I can determine the number of valence electrons in an atom and predict ionic charge.
the Periodic Table. Predict chemical and physical	
properties of main group elements (reactivity, number	I can explain the logic and origin of the Periodic Table.
of subatomic particles, ion charge, ionization energy,	I can predict chemical and physical properties of main group elements
atomic radius, and electronegativity) based on location	rear predict chemical and physical properties of main group clements.
on the periodic table. Construct an argument to	I can explain the observed periodic trends with respect to ionization energies, ionic
describe how the quantum mechanical model of the	radii, and atomic radii.
atom (e.g., patterns of valence and inner electrons)	
defines periodic properties. Use the periodic table to	
draw Lewis dot structures and show understanding of	
orbital notations through drawing and interpreting	
graphical representations (i.e., arrows representing	
electrons in an orbital).	
CHEM1. <u>PS4.1</u> Using a model, explain why elements emit	I can employ a Bohr model to qualitatively explain atomic absorption and emission.
and absorb characteristic frequencies of light and how	
this information is used.	I can explain how emission spectra are characteristic of the elements.
	I can describe examples of how spectroscopy is used
CHEM1. <u>PS1.12</u> Explain the origin and organization of	I can determine the number of protons, neutrons, and electrons in an atom.
the Periodic Table. Predict chemical and physical	
properties of main group elements (reactivity, number	I can determine the atomic number and mass number of isotopes.
of subatomic particles, ion charge, ionization energy,	
atomic radius, and electronegativity) based on location	

on the periodic table. Construct an argument to describe how the quantum mechanical model of the atom (e.g., patterns of valence and inner electrons) defines periodic properties. Use the periodic table to draw Lewis dot structures and show understanding of orbital notations through drawing and interpreting graphical representations (i.e., an arrow representing electrons in an orbital).	
CHEM1. <u>PS1.10</u> Compare alpha, beta, and gamma radiation in terms of mass, charge, and penetrating	I can compare forms of nuclear radiation in terms of symbol, mass, charge, and penetrating power.
power. Identify examples of applications of different radiation types in everyday life (such as its applications in cancer treatment).	I can identify and explain applications of radiation in everyday life.
CHEM1.PS 1.9 Draw models (qualitative models such as	I can model radioactive decay using pictures or diagrams.
pictures or diagrams) to demonstrate understanding of radioactive stability and decay. Understand and	I can compare fission and fusion reactions.
differentiate between fission and fusion reactions. Use models (graphs or tables) to explain the concept of half-life and its use in determining the age of materials (such as radiometric dating).	I can use graphs or tables to model half-life.
CHEM1. <u>PS1.11</u> Develop and compare historical models	I can explain the limitations of the Bohr model and evidence that led to the quantum
of the atom (from Democritus to quantum model) and	mechanical model.
construct arguments to show how scientific knowledge evolves over time, based on experimental evidence, critique, and alternative interpretations.	I can describe each atomic orbital (s, p, d, and f) in terms of shape, location, relative energy, and number of possible electrons.
CHEM1.<u>PS1.12</u> Explain the origin and organization of the Periodic Table. Predict chemical and physical	I can represent and explain an atom's electronic structure using orbital diagrams and electron configurations including noble gas electron configurations
properties of main group elements (reactivity, number of subatomic particles, ion charge, ionization energy,	I can draw Lewis dot diagrams.

atomic radius, and electronegativity) based on location on the periodic table. Construct an argument to describe how the quantum mechanical model of the atom (e.g., patterns of valence and inner electrons) defines periodic properties. Use the periodic table to draw Lewis dot structures and show understanding of orbital notations through drawing and interpreting graphical representations (i.e., arrows representing electrons in an orbital).	
CHEM1. <u>PS1.13</u> Use the periodic table and electronegativity differences of elements to predict the types of bonds that are formed between atoms during chemical reactions and write the names of chemical compounds, including polyatomic ions using the IUPAC system	I can use electronegativity differences or the periodic table to predict bond type.
CHEM1.<u>PS1.14</u> Use Lewis dot structures and electronegativity differences to predict the polarities of simple molecules (linear, bent, trigonal planar, trigonal	I can analyze potential Lewis structures to choose the best choice with a justification. I can apply and defend VSEPR theory.
pyramidal, tetrahedral). Construct an argument to explain how electronegativity affects the polarity of basic chemical molecules.	I can predict the shape and polarity for simple molecules.
CHEM1. <u>PS2.1</u> Draw, identify, and contrast graphical representations of chemical bonds (ionic, covalent, and metallic) based on chemical formulas. Construct and communicate explanations to show that atoms combine by transferring or sharing electrons.	I can use Bohr diagrams and Lewis dot structures to model bonding. I can identify types of bonds represented by particle diagrams.

CHEM1.PS1.12 Explain the origin and organization of	I can use the quantum mechanical model to explain periodicity.
the Periodic Table. Predict chemical and physical	
properties of main group elements (reactivity, number	
of subatomic particles, ion charge, ionization energy,	
atomic radius, and electronegativity) based on location	
on the periodic table. Construct an argument to	
describe how the quantum mechanical model of the	
atom (e.g., patterns of valence and inner electrons)	
defines periodic properties. Use the periodic table to	
draw Lewis dot structures and show understanding of	
orbital notations through drawing and interpreting	
graphical representations (i.e., arrows representing	
electrons in an orbital).	

Big Ideas/Key Concepts:

Note for any standards including both bold and non-bold portions, the bold part of the standard is the focus for this quarter. Non-bolded portions of the standard are addressed at other times in the year.

Unit 10: Intermolecular Forces

Intermolecular forces (IMF) (Hydrogen bonding, London dispersionary, dipole-dipole), with continuation of particle models; for honors, optional to include dipole-induced dipole

Unit 11: Solutions, Acids & Bases

Solutions (colligative properties; particle models based on evidence; ppm); for honors, optional to include solubility rules and curves, percent by mass, molality, acids and bases titrations and dilution

Unit 12: Energy & Temperature

Kinetic molecular theory and energy; temperature; gas laws including Ideal Gas Law with the math; phase diagrams

Unit 13: Thermochemistry

Thermochemistry; calorimetry; heat of reactions; potential energy diagrams; heating curves; q = mCΔT

Quick Links within this Document Quarter 1 Quarter 2 Quarter 3 TN Science Standards Reference Guide WCS Chamistry OER	
Standards	Student Friendly "I Can" Statements
CHEM1. <u>PS2.2</u> Understand that intermolecular forces created by the unequal distribution of charge result in	I can identify, explain, and model the intermolecular forces that exist between molecules.
varying degrees of attraction between molecules. Compare and contrast the intermolecular forces (hydrogen bonding, dipole-dipole bonding, and London	I can use intermolecular forces to compare and contrast physical properties.

dispersion forces) within different types of simple substances (only those following the octet rule) and predict and explain their effect on chemical and physical properties of those substances using models or graphical representations.	
CHEM1. <u>PS1.7</u> Analyze solutions to identify solutes and solvents, quantitatively analyze concentrations (molarity, percent composition, and ppm), and perform separation methods such as evaporation, distillation, and/or chromatography and show conceptual understanding of distillation. Construct an argument to justify the use of certain separation methods under different conditions.	I can model how distillation separates mixtures. I can create, execute, and explain a plan to separate a mixture. I can construct an argument to justify using certain separation methods under different conditions.
CHEM1. <u>PS1.7</u> Analyze solutions to identify solutes and solvents, quantitatively analyze concentrations (molarity, percent composition, and ppm), and perform separation methods such as evaporation, distillation, and/or chromatography and show conceptual understanding of distillation. Construct an argument to justify the use of certain separation methods under different conditions.	I can analyze solutions to identify the solute and solvent. I can prepare a solution of known concentration. I can calculate, analyze, and compare concentrations in terms of molarity, percent composition, and ppm.
CHEM1. <u>PS1.15</u> Investigate, describe, and mathematically determine the effect of solute concentration on vapor pressure using the solute's van't Hoff factor on freezing point depression and boiling point elevation. <i>Note: interpret van't Hoff factor graphically not through</i> <i>mathematical calculations.</i>	I can plan and perform experiments investigating colligative properties

CHEM1. <u>PS1.8</u> Identify acids and bases as a special class	I can identify acids and bases based on formulas, response to indicators, pH and their
of compounds with a specific set of properties.	behaviors.
CHEM1. <u>PS2.3</u> Construct a model to explain the process	I can use forces of attraction to predict and explain solubility.
by which solutes dissolve in solvents and develop an	Lean model column
argument to describe how intermolecular forces affect	
the solubility of different chemical compounds.	
CHEM1. <u>PS2.4</u> Conduct an investigation to determine	I can design, conduct, and analyze factors affecting the rate of solvation.
how temperature, surface area, and stirring affect the	
rate of solubility. Construct an argument to explain the	I can use collision theory to explain the rate of solvation.
relationships observed in experimental data using	
collision theory.	
CHEM1.PS1.5 Conduct investigations to explore and	I can relate the properties of a gas to the number of particles in the sample
characterize the behavior of gases (pressure, volume	
temperature), develop models to represent this	I can quantitatively apply all the gas laws.
behavior and construct arguments to explain this	
behavior. Evaluate the relationship (qualitatively and	
quantitatively) at STP between pressure and volume	
(Boyle's law), temperature and volume (Charles's law),	
temperature and pressure (Gay-Lussac law), and moles	
and volume (Avogadro's law), and evaluate and explain	
these relationships with respect to kinetic-molecular	
theory. Be able to understand, establish, and predict	
the relationships between volume, temperature, and	
pressure using combined gas law both qualitatively and	
quantitatively.	

CHEM1. <u>PS1.6</u> Use the ideal gas law, PV = nRT, to	I can solve problems using the ideal gas law.
algebraically evaluate the relationship among the number of moles, volume, pressure, and temperature for ideal gases.	I can carry out and analyze an experiment that applies the ideal gas law.
CHEM1. <u>PS3.2</u> Draw and interpret heating and cooling	I can draw and interpret heating and cooling curves.
curves and phase diagrams. Analyze the energy changes involved in calorimetry by using the law of conservation of energy quantitatively (use of $q=mc\Delta T$) and qualitatively.	I can draw and interpret phase diagrams.
	I can relate heat, mass, specific heat capacity, and temperature change.
	I can solve problems using $q = mC\Delta T$.
	I can use the law of conservation of energy to plan, carry out, analyze, improve, and explain a calorimetry experiment.
CHEM1.PS3.1 Contrast the concepts of temperature and	I can use a particle model to explain heat and temperature.
heat flow in macroscopic and microscopic terms. Understand that thermal energy is a form of energy and temperature is a measure of average kinetic energy of a malocule	I can describe how heat energy flows in a system.
molecule.	
CHEM1. <u>PS3.3</u> Distinguish between endothermic and exothermic reactions by constructing potential energy diagrams and explaining the differences between the two using chemical terms (e.g., activation energy).	I can draw and interpret potential energy diagrams. I can relate the components of a potential energy diagram to breaking and forming bonds in a chemical reaction.
Recognize when energy is absorbed or given off depending on the bonds formed and bonds broken.	