The following <u>Practice Standards</u> and <u>Literacy Skills</u> will be used throughout the course:

Standards for Mathematical Practice	iteracy Skills for Mathematical Proficiency
1. Make sense of problems and persevere in solving them.	1. Use multiple reading strategies.
2. Reason abstractly and quantitatively.	2. Understand and use correct mathematical vocabulary.
3. Construct viable arguments and critique the reasoning of others.	3. Discuss and articulate mathematical ideas.
4. Model with mathematics. \star	4. Write mathematical arguments.
5. Use appropriate tools strategically.	
6. Attend to precision.	
7. Look for and make use of structure.	
8. Look for and express regularity in repeated reasoning.	

Standards	Student Friendly "I Can" Statements
P.F.BF.A.1 Understand how the algebraic properties of an equation	I can describe the transformation of the graph resulting from the
transform the geometric properties of its graph.	stretches, reflections, and changes in periodicity and amplitude).
For example, given a function, describe the transformation of the graph	
resulting from the manipulation of the algebraic properties of the equation	
(i.e., translations, stretches, reflections and changes in periodicity and	
amplitude).	
P.F.IF.A.1 Determine whether a function is even, odd, or neither.	I can determine whether a function is even, odd, or neither algebraically
	nor graphically.
P.F.BF.A.2 Develop an understanding of functions as elements that can be	I can create functions by adding, subtracting, multiplication, division, and
operated upon to get new functions: addition, subtraction, multiplication,	composition of functions.
division, and composition of functions.	
P.F.BF.A.3 Compose functions.	I can form a composite function.
For example, if T(y) is the temperature in the atmosphere as a function of	
height, and h(t) is the height of a weather balloon as a function of time, then	I can find the domain of a composite function.
<i>T</i> (<i>h</i> (<i>t</i>)) is the temperature at the location of the weather balloon as a	
function of time.	I can recognize the role that domain of a function plays in the combination
	of functions by composition of functions
P.F.BF.A.4 Construct the difference quotient for a given function and	I can construct the difference quotient for a given function and simplify
simplify the resulting expression.	the resulting expression.
P.F.BF.A.5 Find inverse functions (including exponential, logarithmic, and	I can calculate the inverse of a function with respect to each of the
trigonometric).	functional operations.

Standards	Student Friendly "I Can" Statements
a. Calculate the inverse of a function, $f(x)$, with respect to each of the functional operations; in other words, the additive inverse, $-f(x)$, the multiplicative inverse, $\frac{1}{f(x)}$ and the inverse with respect to composition, $f^{-1}(x)$. Understand the algebraic and graphical implications of each type. b. Verify by composition that one function is the inverse of another. c. Read values of an inverse function from a graph or a table, given that the function has an inverse.	I can verify by composition that one function is the inverse of another. I can identify whether a function has an inverse with respect to composition and when functions are inverses of each other with respect to composition. I can find an inverse function by restricting the domain of a function that is not one-to-one.
d. Recognize a function is invertible if and only if it is one-to-one. Produce an invertible function from a non-invertible function by restricting the domain.	
P.F.BF.A.6 Explain why the graph of a function and its inverse are reflections of one another over the line y=x.	I can explain why the graph of a function and its inverse are reflections of one another over the line <i>y</i> = <i>x</i> .
P.S.MD.A.3 ★Use a regression equation modeling bivariate data to make predictions. Identify possible considerations regarding the accuracy of predictions when interpolating or extrapolating.	I can use a regression equation modeling bivariate data to make predictions.
P.F.TE.A.1 Convert from radians to degrees and from degrees to radians.	I can convert from radians to degrees and from degrees to radians.
P.G.AT.A.3 Derive and apply the formulas for the area of sector of a circle.	I can derive and apply the formulas for the area of the sector of a circle.
P.G.AT.A.4 Calculate the arc length of a circle subtended by a central angle.	I can calculate the arc length of a circle subtended by a central angle.
P.F.TF.A.2 Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express	I can find the reference angle of any angle on the unit circle.
the values of sine, cosine, and tangent for π - x , π + x , and 2π - x in terms of their values for x , where x is any real number.	I can evaluate the trig functions of any angle of the unit circle using reference angles.
P.F.TF.A.3 Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.	I can use the unit circle to explain the symmetry of the six trigonometric functions.
	I can describe periodicity of all six trigonometric functions.
P.F.GT.A.1★ Interpret transformations of trigonometric functions.	I can match a trigonometric equation with its graph by recognizing the parent graph and by using transformations.
P.F.GT.A.2★ Determine the difference made by choice of units for angle	I can determine the difference made by choice of units for angle
measurement when graphing a trigonometric function.	measurement when graphing a trigonometric function.
P.F.GT.A.3★ Graph the six trigonometric functions and identify	I can graph the six trigonometric functions (sin, cos, tan, csc, sec, cot) and

Standards	Student Friendly "I Can" Statements
characteristics such as period, amplitude, phase shift, and asymptotes.	identify characteristics such as period, amplitude, phase shift, and asymptotes.
P.F.GT.A.4★ Find values of inverse trigonometric expressions (including	I can find values of inverse trigonometric functions, applying appropriate
compositions), applying appropriate domain and range restrictions.	domain and range restrictions.
P.F.GT.A.5★ Understand that restricting a trigonometric function to a	I can understand that restricting a trigonometric function to a domain on
domain on which it is always increasing or always decreasing allows its	which it is always increasing or always decreasing allows its inverse to be
inverse to be constructed.	constructed.
P.F.GT.A.6★ Determine the appropriate domain and corresponding range	I can determine and list the appropriate domain and corresponding range
for each of the inverse trigonometric functions.	for each of the inverse trigonometric functions.
P.F.GT.A.7 Graph the inverse trigonometric functions and identify their key	I can graph the inverse trigonometric functions and identify their key
characteristics.	characteristics.
P.F.GT.A.8★ Use inverse functions to solve trigonometric equations that	I can use inverse functions to solve trigonometric equations that arise in
arise in modeling contexts; evaluate the solutions using technology and	modeling contexts.
interpret them in terms of the context.	
	I can analyze the results of solving an equation and determine when it
	represents the solution of a real-world problem.
	I can explain why some results are not actually answers for the real-world
	problem.
P.G.AT.A.1 ★Use the definitions of the six trigonometric ratios as ratios of	I can use the definitions of the six trigonometric ratios as ratios of sides in
sides in a right triangle to solve problems about lengths of sides and	a right triangle to solve problems about lengths of sides and measures of
measures of angles.	angles.
P.S.MD.A.3 \star Use a regression equation modeling bivariate data to make	I can use a regression equation modeling bivariate data to make
predictions. Identify possible considerations regarding the accuracy of	predictions involving exponential, logarithmic, and trigonometric
predictions when interpolating or extrapolating.	functions.
P.F.TF.A.4 Choose trigonometric functions to model periodic phenomena	I can choose trigonometric functions to model periodic phenomena with
with specified amplitude, frequency, and midline.	specified amplitude, frequency, and midline.
Honors Addendum:	I can apply linear and angular velocity formulas in real world applications.
P.WCE.1	
Apply the arc length formula or conversion factors to real world applications.	I can create and analyze mathematical models that describe situations including growth and decay and financial applications.
P.WCE.2	
Apply appropriate techniques to analyze mathematical models and functions	
constructed from verbal information: interpret the solution obtained in	
written form using appropriate units of measurement.	

Standards	Student Friendly "I Can" Statements
P.G.TI.A.1 ★Apply trigonometric identities to verify identities and solve	I can recognize and use the following trigonometric identities to verify
sum/difference, double-angle, and half-angle.	Quotient, Sum/Difference, Double Angle
P.G.TI.A.2 ★ Prove the addition and subtraction formulas for sine, cosine,	I can prove the sum and difference formulas for sine, cosine, and tangent
and tangent and use them to solve problems.	and apply them in solving problems.
P.G.AT.A.2 \star Derive the formula $A = \frac{1}{2}ab$ sinc for the area of a triangle by	I can derive the area of triangle formula
drawing an auxiliary line from a vertex perpendicular to the opposite side.	A= $\frac{1}{2}$ ab sinC by constructing a drawing to model the situation.
P.G.AT.A.5 ★Prove the Laws of Sines and Cosines and use them to solve problems.	I can prove the Law of Sines and Cosines and apply them to solve problems.
P.G.AT.A.6 ★Understand and apply the Law of Sines (including the	I can apply the Law of Sines (including the ambiguous case) and Cosines to
ambiguous case) and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).	solve right and oblique triangles.
	I can solve real work problems (e.g. surveying, navigation.)
	I can determine how many solutions are possible for the Ambiguous case of
	the Law of Sines.
	I can determine when it is appropriate to use $A = (1/2)ab$ sinC and Heron's
	Law.
	I can find areas of triangles using the two area formulas $A = (1/2)ab$ sinC and
	Heron's Law.
P.N.VM.A.1 Recognize vector quantities as having both magnitude and direction. Bonresont vector quantities by directed line segments and use	I can represent vectors graphically with both magnitude and direction.
appropriate symbols for vectors and their magnitudes (e.g. y. y y y)	I can represent vectors by directed line segments and use appropriate
	symbols for vectors and their magnitudes.
	I can interpret vectors geometrically and their relationship to real life
	problems.
P.N.VM.A.2 Find the components of a vector by subtracting the coordinates	I can demonstrate that vectors are determined by the coordinates of their
of an initial point from the coordinates of a terminal point.	initial and terminal points, or by their components

Standards	Student Friendly "I Can" Statements
P.N.VM.B.3 Solve problems involving velocity and other quantities that can be represented by vectors.	I can use vectors to model velocity and direction to solve problems.
P.N.VM.B.4 Add and subtract vectors.	I can add and subtract vectors using a variety of methods and multiple
a. Add vectors end-to-end, component-wise, and by the parallelogram rule.	representations.
Understand that the magnitude of a sum of two vectors is typically not the	
sum of the magnitudes.	I can represent vectors and vector arithmetic graphically by creating a
b. Given two vectors in magnitude and direction form, determine the	resultant vector.
magnitude and direction of their sum.	
c . Understand vector subtraction $\mathbf{v} - \mathbf{w}$ as $\mathbf{v} + (-\mathbf{w})$, where $-\mathbf{w}$ is the additive	I can calculate the magnitude and direction angle of a resultant vector.
inverse of w , with the same magnitude as w and pointing in the opposite	
direction. Represent vector subtraction graphically by connecting the tips in	I can represent vector subtraction graphically.
the appropriate order and perform vector subtraction component-wise.	
P.N.VM.B.5 Multiply a vector by a scalar.	I can multiply a vector by a scalar algebraically and by modeling them
a. Represent scalar multiplication graphically by scaling vectors and possibly	graphically.
reversing their direction; perform scalar multiplication component-wise,	
e.g., as c(vx, vy) = (cvx, cvy).	I can calculate the magnitude and the direction angle of a scalar multiple of
b. Compute the magnitude of a scalar multiple $c\mathbf{v}$ using $ c\mathbf{v} = c v$.	a vector.
Compute the direction of cv knowing that when $ c v \neq 0$, the direction of cv	
is either along \boldsymbol{v} (for $c > 0$) or against \boldsymbol{v} (for $c < 0$).	
P.N.CN.A.4 Represent addition, subtraction, multiplication, and conjugation	I can represent addition, subtraction, multiplication, and division of complex
of complex numbers geometrically on the complex plane; use properties of	numbers geometrically on the complex plane.
this representation for computation. For example, $(-1 + 3i)^3 = 8$ because $(-1)^3 = 8$	
+ 3 i) has modulus 2 and argument 120°.	
P.N.CN.A.5 Calculate the distance between numbers in the complex plane as	I can calculate the distance between numbers in the complex plane as the
the modulus of the difference, and the midpoint of a segment as the	magnitude or modulus of the difference by finding the absolute value of the
average of the numbers at its endpoints.	complex number.
	I can calculate the midpoint of a segment as the average of the numbers at
DNNA DC Coloulate and interrupt the data and ust of two vectors	Its endpoints.
FINITION Calculate and interpret the dot product of two vectors.	I can interpret the dot product of two vectors
	I can use the dot product to find the angle between two vectors.
P.N.CN.A.1 Perform arithmetic operations with complex numbers expressing	I can perform arithmetic operations with complex numbers expressing
answers in the form <i>a+bi</i> .	answers in the form <i>a+bi</i> .

Standards	Student Friendly "I Can" Statements
P.N.CN.A.2 Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	I can find the conjugate of a complex number and use them to find moduli and quotients of complex numbers.
Honors Addendum: P.WCE.3 Apply De Moivre's Theorem to find powers and roots of complex numbers.	I can apply De Moivre's Theorem to find powers and roots of complex numbers.

Standards	Student Friendly "I Can" Statements
P.G.PC.A.1 Graph functions in polar coordinates.	I can graph functions in polar coordinates.
P.G.PC.A.2 Convert between rectangular and polar coordinates.	I can convert between rectangular and polar coordinates.
P.G.PC.A.3 ★ Represent situations and solve problems involving polar	I can represent complex numbers on the complex plane in rectangular and
coordinates.	polar form.
P.N.CN.A.3 Represent complex numbers on the complex plane in	I can represent complex numbers on the complex plane in rectangular and
rectangular and polar form (including real and imaginary numbers) and	polar form (including real and imaginary numbers).
explain why the rectangular and polar forms of a given complex number	
represent the same number.	I can explain why the rectangular and polar forms of a given complex
	number represent the same number.
P.A.PE.A.1 ★Graph curves parametrically (by hand and with appropriate	I can graph parametrically by hand and with appropriate technology.
technology).	
P.A.PE.A.2 ★Eliminate parameters by rewriting parametric equations as a	I can eliminate parameters by rewriting parametric equations as a single
single equation.	equation.
P.F.IF.A.5 Identify characteristics of graphs based on a set of conditions or	I can identify characteristics of graphs such as direction it opens, vertex
on a general equation such as $y = ax^2 + c$.	based on a set of conditions or on a general equation such as $y = ax^2 + c$.
P.F.IF.A.2 *Analyze qualities of exponential, polynomial, logarithmic,	I can analyze qualities of exponential, polynomial, logarithmic,
trigonometric, and rational functions and solve real world problems that can	trigonometric, and rational functions and solve real world problems that
be modeled with these functions (by hand and with appropriate	can be modeled with these functions.
technology).	
	I can identify or analyze the following properties of polynomial, and rational
	functions from tables, graphs, and equations.
	Domain Benere
	Kange Continuity
	 Continuity Increasing decreasing behavior
	Increasing/decreasing behavior Summetry
	Symmetry Boundedness
	Evtrema
	Intercents
	 Holes

Standards	Student Friendly "I Can" Statements
	End behavior with limit notation.
	Concavity
P.F.IF.A.4 Identify the real zeros of a function and explain the relationship	I can identify the real zeros of the graph of a function (polynomial, rational,
between the real zeros and the x-intercepts of the graph of a function (exponential, polynomial, logarithmic, trigonometric, and rational).	exponential, logarithmic, and trigonometric) in equation or graphical form.
	I can explain the relationship between the real zeros and the <i>x</i> -intercept of
	the graph of a function (polynomial, rational, exponential, logarithmic, and trigonometric).
P.F.IF.A.6 Visually locate critical points on the graphs of functions and	I can locate critical points on the graphs of polynomial functions and
determine if each critical point is a minimum, a maximum or point of	determine if each critical point is a minimum or a maximum.
inflection. Describe intervals where the function is increasing or decreasing	
and where different types of concavity occur.	I can describe and locate maximums, minimums, increasing and decreasing
	intervals, and zeros given a sketch of the graph.
P.F.IF.A.7 Graph rational functions, identifying zeros, asymptotes (including	I can graph rational functions, identifying zeros, asymptotes (including
slant), and holes (when suitable factorizations are available) and showing	slant), and holes (when suitable factorizations are available) and showing
end-behavior.	end-behavior.
P.N.CN.B.6 Extend polynomial identities to the complex numbers. <i>For</i>	I can extend polynomial identities to the complex numbers.
example, rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$.	
P.N.C.N.B.7 Know the Fundamental Theorem of Algebra; show that it is true	I know the Fundamental Theorem of Algebra and can show it is true for
Tor quadratic polynomials.	quadratic polynomials.
P.N.NE.A.4 Simplify complex radical and rational expressions; discuss and display understanding that rational numbers are dense in the real numbers	i can simplify complex radical and rational expressions.
and the integers are not	
P N NE A 5 Understand that rational expressions form a system analogous	I can add subtract multiply and divide rational expressions
to the rational numbers closed under addition subtraction multiplication	
and division by a nonzero rational expression: add, subtract, multiply, and	
divide rational expressions.	
P.A.REI.A.3 Solve nonlinear inequalities (guadratic, trigonometric, conic,	I can solve nonlinear inequalities (quadratic and rational) by graphing
exponential, logarithmic, and rational) by graphing (solutions in interval	(solutions in interval notation if one-variable), by using a sign chart, and
notation if one-variable), by hand and with appropriate technology.	with appropriate technology.
P.A.REI.A.4 Solve systems of nonlinear inequalities by graphing.	I can solve systems of nonlinear inequalities by graphing.
P.F.IF.A.2 ★ Analyze qualities of exponential, polynomial, logarithmic,	I can identify or analyze the following properties of exponential,
trigonometric, and rational functions and solve real world problems that can	logarithmic, and logistic functions.
be modeled with these functions (by hand and with appropriate	• Domain
technology).	Range

Standards	Student Friendly "I Can" Statements
	Continuity
	 Increasing/decreasing behavior
	Symmetry
	Boundedness
	Extrema
	Asymptotes
	Intercepts
	Holes
	End behavior with limit notation.
	Concavity
	I can solve real world problems that can be modeled using quadratic,
	exponential, or logarithmic functions (by hand and with appropriate
	technology).
	I can determine what function should be used to model a real-world
	situation.
	I can apply the appropriate function to a real-world situation and then find its solution
P.N.NE.A.3 Classify real numbers and order real numbers that include	I can classify real numbers and order real numbers that include
transcendental expressions, including roots and fractions of pi and e.	transcendental expressions, including roots and fractions of pi and e.
P.N.NE.A.2 ★Understand the inverse relationship between exponents and	I can demonstrate understanding of the inverse relationship between
logarithms and use this relationship to solve problems involving logarithms	exponents and logarithms.
and exponents.	
	I can solve problems containing logarithms and exponents.
	I can change an equation from logarithmic to exponential form and back.
	i can solve exponential equations.
	I can solve logarithmic equations.
	I can prove basic properties of a logarithm using properties of its inverse
	and apply those properties to solve problems.

Standards	Student Friendly "I Can" Statements
	I can find the inverse of an exponential or a logarithmic function.
P.N.NE.A.1 Use the laws of exponents and logarithms to expand or collect terms in expressions; simplify expressions or modify them to analyze them or compare them.	I can use the laws of exponents and logarithms to expand or collect terms in expressions; simplify expressions or modify them to analyze them or compare them.
	I can compare exponential and logarithmic expressions.
Honors Addendum:	
P.WCE.4	I can simulate motion using parametric equations.
Simulate motion using parametric equations.	
	I can solve challenging optimization problems involving three-dimensional
P.WCE.5	figures, i.e. boxes, cones.
Solve maximum/minimum value problems by converting the given verbal	
information into an appropriate mathematical model and analyzing the	I can describe the solution process by analyzing the graph and constructing
graph of that model graphically to answer the questions. Recognize the	arguments to explain this reasoning.
approximation necessary when solving graphically.	
	I can use precise language to write solutions to max/min problems.

Standards	Student Friendly "I Can" Statements
P.N.VM.C.7 Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.	I can use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.
P.N.VM.C.8 Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.	I can multiply matrices by scalars to produce new matrices, e.g., as when all the payoffs in a game are doubled.
P.N.VM.C.9 Add, subtract, and multiply matrices of appropriate dimensions.	I can determine if matrices may be added, subtracted, or multiplied by using their dimensions. I can add, subtract, and multiply matrices of appropriate dimensions.
P.N.VM.C.10 Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.	I can show that matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.
P.N.VM.C.11 Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the	I can show how the zero and identity matrices play a role in matrix addition and multiplication like the role of 0 and 1 in the real numbers.
matrix has a multiplicative inverse.	I can explain how the determinant of a square matrix is non-zero if and only if the matrix has a multiplicative inverse.
P.N.VM.C.12 Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.	I can multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector.
P.N.VM.C.13 Work with 2 × 2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.	I can work with 2×2 matrices as transformations of the plane and interpret the absolute value of the determinant in terms of area.
P.A.REI.A.1 Represent a system of linear equations as a single matrix equation in a vector variable.	I can represent a system of equations as a single matrix equation in a vector variable.
P.A.REI.A.2 Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 × 3 or greater).	I can find the inverse of a matrix if it exists and use it to solve systems of linear equations.
	I can use technology when solving system of equations represented by matrices of dimensions 3×3 or greater.
P.A.S.A.1 Demonstrate an understanding of sequences by representing them recursively and explicitly.	I can demonstrate an understanding of sequences by representing them recursively and explicitly.
P.A.S.A.2 Use sigma notation to represent a series; expand and collect expressions in both finite and infinite settings.	I can use Sigma notation to represent a series.

Standards	Student Friendly "I Can" Statements
P.A.S.A.3 Derive and use the formulas for the general term and summation	I can determine whether a given arithmetic or geometric series converges or
of finite or infinite arithmetic and geometric series if they exist.	diverges.
a. Determine whether a given arithmetic or geometric series converges or	I can find the sum of a given geometric series (both infinite and finite).
diverges.	
	I can find the sum of a finite arithmetic series.
b . Find the sum of a given geometric series (both infinite and finite).	
a menulation of the first second second second second	
c. Find the sum of a finite arithmetic series.	
P.F.IF.A.8 Recognize that sequences are functions, sometimes defined	I can analyze a variety of types of situations modeled by functions and
recursively, whose domain is a subset of the integers.	recognize that sequences are functions, sometimes defined recursively.
For example, the Eibenacci sequence is defined recursively by $f(0)-f(1)-1$	
f(n+1) = f(n) + f(n-1) for $n > 1$	
$P \land S \land A$ Understand that series represent the approximation of a number	I can understand that the series represent the approximation of a number
when truncated: estimate truncation error in specific examples	when truncated: estimate truncation error in specific examples
PASA5 Know and apply the Binomial Theorem for the expansion of $(x + y)^n$	L can know and apply the Binomial Theorem for the expansion of $(x + y)^n$ in
in powers of y and y for a positive integer n, where y and y are any numbers	nowers of y and y for a positive integer n where y and y are any numbers
with coefficients determined for example by Pascal's Triangle	with coefficients determined for example by Pascal's Triangle
P.A.C.A.1 Display all the conic sections as portions of a cone	I can display all the conic sections as portions of a cone
P.A.C.A.2 Derive the equations of ellipses and hyperbolas given the foci,	I can derive the equations of ellipses and hyperbolas given the foci, using the
using the fact that the sum or difference of distances from the foci is	fact that the sum or difference of distances from the foci is constant.
constant.	
P.A.C.A.3 From an equation in standard form, graph the appropriate conic	I can graph ellipses and hyperbolas and demonstrate understanding of the
section: ellipses, hyperbolas, circles, and parabolas. Demonstrate an	relationship between their standard algebraic form and the graphical
understanding of the relationship between their standard algebraic form	characteristics.
and the graphical characteristics.	
P.A.C.A.4 Transform equations of conic sections to convert between general	I can transform equations of conic sections to convert between general and
and standard form.	standard form.
P.S.MD.A.1 ★ Create scatter plots, analyze patterns and describe	I can create scatter plots for bivariate data. (linear, polynomial,
relationships for bivariate data (linear, polynomial, trigonometric or	trigonometric or exponential) to model real-world phenomena.
exponential) to model real-world phenomena and to make predictions.	
	I can analyze patterns from the scatter plots that I created.

Standards	Student Friendly "I Can" Statements
	I can describe relationships in the scatter plots.
P.S.MD.A.2 ★Determine a regression equation to model a set of bivariate data. Justify why this equation best fits the data.	I can explain how to determine the best regression equation model that approximates a particular data set.
P.S.MD.A.3 ★Use a regression equation modeling bivariate data to make predictions. Identify possible considerations regarding the accuracy of	I can find the regression equation that best fits bivariate data.
predictions when interpolating or extrapolating.	I can use a regression equation modeling bivariate data to make predictions.
	I can identify possible considerations regarding the accuracy of predictions
	when interpolating or extrapolating.
Honors Addendum: P.WCE.6	I can explore the properties of a limit by analyzing sequences and series.
Develop the concept of the limit using tables, graphs, and algebraic	I can understand the relationship between a horizontal asymptote and the
properties.	limit of a function at infinity.
	I can determine the limit of a function at a specified number.
	I can find the limit of a function at a number using algebra.